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a b s t r a c t

It is well-known that the classes of starlike, convex and close-to-convex univalent
functions are closed under convolution with convex functions. In this paper, closure prop-
erties under convolution of general classes of meromorphic p-valent functions that are
either starlike, convex or close-to-convex with respect to n-ply symmetric, conjugate
and symmetric conjugate points are investigated.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let HðDÞ be the set of all analytic functions on the unit disk D :¼ fz 2 C : jzj < 1g, and let A � HðDÞ be the subclass of
normalized functions of the form f ðzÞ ¼ zþ

P1
n¼2anzn. An analytic function f is subordinate to an analytic function g, written

f(z) � g(z), if there exists a Schwarz function w analytic in D with w(0) = 0 and jw(z)j < 1, satisfying f(z) = g(w(z)). In particular,
if the function g is univalent in D, then f(z) � g(z) is equivalent to f(0) = g(0) and f ðDÞ � gðDÞ. The convolution or the Hadam-
ard product of two series f ðzÞ ¼

P
anzn and gðzÞ ¼

P
bnzn is defined by ðf � gÞðzÞ ¼

P
anbnzn. For a convex function f 2 A, it

follows from Alexander’s theorem that zf’(z) = f(z) ⁄ (z/(1 � z)2) is a starlike function. In view of the identity f(z) = f(z) ⁄ (z/
(1 � z)), it is evident that the classes of convex and starlike functions can be unified by considering functions f satisfying
f ⁄ g is starlike for an appropriate fixed function g 2 A. Thus convolution and subordination can be used to define a more gen-
eral class of analytic functions

ST ðg;hÞ :¼ f 2 A :
zðf � gÞ0ðzÞ
ðf � gÞðzÞ � hðzÞ

� �
;

where g is a fixed function in A, and h a suitably normalized analytic function with positive real part in D. In particular, let
ST ðhÞ :¼ ST ðz=ð1� zÞ;hÞ and CVðhÞ :¼ ST ðz=ð1� zÞ2; hÞ are the classes introduced by Ma and Minda [5]. For
hðzÞ ¼ ð1þ ð1� 2aÞzÞ=ð1� zÞ; 0 6 a < 1; ST ðhÞ and CVðhÞ are respectively the familiar classes ST ðaÞ and CVðaÞ of starlike
functions of order a, and convex functions of order a.
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Close-to-convex functions are univalent functions; a very simple subclass of such functions are those functions f satisfy-
ing Ref

0
(z) > 0. Other subclasses of close-to-convex functions include the classes of starlike functions with respect to either

symmetric points, conjugate, or symmetric conjugate points. A function f 2 A is starlike with respect to symmetric points,
conjugate, or symmetric conjugate points in D if it satisfies respectively the conditions

Re
zf 0ðzÞ

f ðzÞ � f ð�zÞ

� �
> 0; Re

zf 0ðzÞ
f ðzÞ þ f ð�zÞ

 !
> 0 and Re

zf 0ðzÞ
f ðzÞ � f ð��zÞ

 !
> 0:

The class of starlike functions with respect to symmetric points as well as with respect to n-ply symmetric points were intro-
duced by Sakaguchi [10], while El-Ashwah and Thomas [4] investigated the classes of starlike functions with respect to con-
jugate points and symmetric conjugate points. By using subordination, Ravichandran [8] unified the classes of starlike,
convex and close-to-convex functions with respect to n-ply symmetric points, conjugate points and symmetric conjugate
points, and obtained several convolution properties. These works were recently extended for multivalent functions by Ali
et al. [2].

Though the convolution of two univalent (or starlike) functions need not be univalent, it is well-known [9] that the classes
of starlike, convex and close-to-convex functions are closed under convolution with convex functions. By using the convex
hull method [9] and the method of differential subordination [7], Shanmugam [11] introduced and investigated convolution
properties of various subclasses of analytic functions, whereas Ali et al. [1] and Supramaniam et al. [12] investigated these
properties for subclasses of multivalent starlike and convex functions. Similar problems were also investigated for meromor-
phic functions in [3,6,13]. Motivated by the works in [2,3,6,8,11], in this paper, certain subclasses of meromorphic p-valent
functions in the punctured unit disk D� :¼ fz 2 C : 0 < jzj < 1g defined by means of convolution with a given fixed meromor-
phic p-valent function is introduced, and their closure properties under convolution are investigated.

2. Meromorphic multivalent functions with respect to n-ply points

Let Mp denotes the class of all meromorphic p-valent functions of the form

f ðzÞ ¼ 1
zp þ

X1
n¼1

anzn�p ðp P 1Þ; ð2:1Þ

that are analytic in the punctured open unit disk D�. Analogous to classes of starlike and convex analytic functions, classes of
meromorphic p-valent starlike and convex functions, and other related subclasses of meromorphic p-valent functions, are
expressed in the form

MST pðg; hÞ :¼ f 2Mp : �1
p

zðf � gÞ0ðzÞ
ðf � gÞðzÞ � hðzÞ

� �
;

where g is a fixed function inMp, and h a suitably normalized analytic function with positive real part. For instance, the class
of meromorphic p-valent starlike functions of order a, 0 6 a < 1, defined by

MST pðaÞ :¼ f 2Mp : �Re
1
p

zf 0ðzÞ
f ðzÞ > a

� �
;

is a particular case of MST pðg;hÞ with g(z) = 1/(zp(1 � z)) and h(z) = (1 + (1 � 2a)z)/(1 � z).
In this section, four classesMST n

pðg;hÞ; MCV
n
pðg;hÞ; MCC

n
pðg;hÞ andMQCn

pðg; hÞ of meromorphic p-valent functions with
respect to n-ply points are introduced and the convolution properties of these new subclasses are investigated. These new
subclasses extend the classical classes of meromorphic multivalent starlike, convex, close-to-convex and quasi-convex func-
tions, respectively.

In the sequel, let the function g 2Mp be fixed, and h be a convex univalent function with positive real part satisfying
h(0) = 1. Let n P 1 be any integer, �n = 1 and �– 1. For f 2 Mp of the form (2.1), let the function fn be defined by

fnðzÞ :¼ 1
n

Xn�1

k¼0

�nþpkf ð�kzÞ ¼ z�p þ an�pzn�p þ a2n�pz2n�p þ � � � :

Definition 2.1. The class MST n
pðhÞ consists of functions f 2Mp satisfying fn(z) – 0 in D� and the subordination

�1
p

zf 0ðzÞ
fnðzÞ

� hðzÞ:

Similarly, the class MCVn
pðhÞ consists of functions f 2Mp satisfying f 0nðzÞ– 0 in D� and the subordination

�1
p
ðzf 0ðzÞÞ0

f 0nðzÞ
� hðzÞ:
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The class MCCn
pðhÞ consists of functions f 2 Mp satisfying the subordination

�1
p

zf 0ðzÞ
/nðzÞ

� hðzÞ;

for some / 2MST n
pðhÞ with /n(z) – 0 in D�. The class MQCn

pðhÞ consists of functions f 2 Mp satisfying the subordination

�1
p
ðzf 0ðzÞÞ0

u0nðzÞ
� hðzÞ;

for some u 2MCVn
p with u0nðzÞ – 0 in D�. The general classesMST n

pðg;hÞ; MCV
n
pðg;hÞ; MCC

n
pðg;hÞ andMQCn

pðg;hÞ consist
of functions f 2Mp for which f ⁄ g, respectively belongs to MST n

pðhÞ;MCV
n
pðhÞ;MCC

n
pðhÞ and MQCn

pðhÞ.
If g(z): = 1/zp(1 � z), then the classMST n

pðg;hÞ coincides withMST n
pðhÞ, and the classMCCn

pðg;hÞ coincides withMCCn
pðhÞ.

If p = 1 and n = 1, then the classes MST n
pðg; hÞ; MCV

n
pðg;hÞ; MCC

n
pðg;hÞ and MQCn

pðg;hÞ reduced, respectively to
MST ðg;hÞ; MCVðg;hÞ; MCCðg;hÞ and MQCðg;hÞ introduced and investigated in [6]. The notation MST pðhÞ will be used
for the class MST 1

pðhÞ.
For a < 1, the class Ra of prestarlike functions of order a is defined by

Ra :¼ f 2 A : f � z

ð1� zÞ2�2a 2 ST ðaÞ
( )

;

whileR1 consists of f 2 A satisfying Re f(z)/z > 1/2. The well-known result that the classes of starlike functions of order a and
convex functions of order a are closed under convolution with prestarlike functions of order a is a consequence of the
following:

Theorem 2.1 [9, Theorem 2.4]. Let a 6 1, / 2 Ra and f 2 ST ðaÞ. Then

/ � ðHf Þ
/ � f

ðDÞ � coðHðDÞÞ;

for any analytic function H 2 HðDÞ, where coðHðDÞÞ denote the closed convex hull of HðDÞ.
By making use of Theorem 2.1, we prove the following:

Theorem 2.2. Let h be a convex univalent function satisfying

RehðzÞ < 1þ 1� a
p

ð0 6 a < 1Þ;

and / 2Mp with zpþ1/ 2 Ra.

1. If f 2MST n
pðg;hÞ, then / � f 2 MST n

pðg;hÞ.
2. If f 2MCVn

pðg;hÞ, then / � f 2 MCVn
pðg;hÞ.

3. If f 2MCCn
pðg;hÞ with respect to a function u 2 MST n

pðg;hÞ, then / � f 2MCCn
pðg; hÞ with respect to / �u 2 MST n

pðg;hÞ.
4. If f 2MQCn

pðg;hÞ with respect to a function u 2 MCVn
pðg;hÞ, then / � f 2 MQCn

pðg;hÞ with respect to / �u 2 MCVn
pðg;hÞ.

Proof. (1) We first show that if f 2 MST n
pðhÞ, then / � f 2 MST n

pðhÞ. Let f 2 MST n
pðhÞ, and define the functions H and w

by

HðzÞ :¼ � zf 0ðzÞ
pfnðzÞ

and wðzÞ :¼ zpþ1fnðzÞ:

Thus for any fixed z 2 D,

� zf 0ðzÞ
pfnðzÞ

2 hðDÞ:

Replacing z by �kz and using

fnð�kzÞ ¼ ��pkfnðzÞ;

it follows that

� �
kð1þpÞzf 0ð�kzÞ

pfnðzÞ
2 hðDÞ:
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Since hðDÞ is a convex domain, this yields

�1
n

Xn�1

k¼0

�kð1þpÞzf 0ð�kzÞ
pfnðzÞ

2 hðDÞ;

and since

f 0nðzÞ :¼ 1
n

Xn�1

k¼0

ekð1þpÞf 0ðekzÞ;

it follows that

� zf 0nðzÞ
pfnðzÞ

2 hðDÞ; or � zf 0nðzÞ
pfnðzÞ

� hðzÞ:

Hence fn 2 MST pðhÞ. Now RehðzÞ < 1þ 1�a
p yields

Re
zw0ðzÞ
wðzÞ ¼ Re

zf 0n
fn
þ pþ 1 > a: ð2:2Þ

Inequality (2.2) shows that the function w belongs to ST ðaÞ. A computation shows that

� zð/ � f Þ0ðzÞ
pð/ � f ÞnðzÞ

¼ ð/ � ð�p�1zf 0ÞÞðzÞ
ð/ � fnÞðzÞ

¼ ð/ � ðHfnÞÞðzÞ
ð/ � fnÞðzÞ

¼ ðz
pþ1/ðzÞÞ � ðHðzÞwðzÞÞ
ðzpþ1/ðzÞÞ � ðwðzÞÞ :

Since zpþ1/ 2 Ra and w 2 ST ðaÞ, Theorem 2.1 yields

ðzpþ1/ðzÞÞ � ðHðzÞwðzÞÞ
ðzpþ1/ðzÞÞ � ðwðzÞÞ 2 coðHðDÞÞ:

The subordination H � h implies

� zð/ � f Þ0ðzÞ
pð/ � f ÞnðzÞ

� hðzÞ:

Thus / � f 2 MST n
pðhÞ. The general case follows from the fact that

f 2 MST n
pðg; hÞ () f � g 2MST n

pðhÞ:

If f 2 MST n
pðg; hÞ, then f � g 2 MST n

pðhÞ, and therefore / � f � g 2 MST n
pðhÞ, or equivalently / � f 2 MST n

pðg;hÞ.
(2) The identity

�ðzðg � f Þ0ðzÞÞ0

pðg � f Þ0nðzÞ
¼ � zðg � �p�1zf 0Þ0ðzÞ

pðg � �p�1zf 0ÞnðzÞ

shows that f 2 MCVn
pðg;hÞ if and only if � zf 0

p 2 MST
n
pðg;hÞ, and by the result of part (1), it is clear that / � � zf 0

p

� �
¼

� z
p ð/ � f Þ0ðzÞ 2 MST n

pðg; hÞ. Hence / � f 2 MCVn
pðg;hÞ.

The proofs of the remaining parts run along similar lines, and are therefore omitted. h

Remark 2.1.

1. The conclusion of Theorem 2.2 can be written in the following equivalent forms:

MST n
pðg;hÞ � MST

n
pð/ � g; hÞ; MCVn

pðg;hÞ � MCV
n
pð/ � g; hÞ;

MCCn
pðg; hÞ � MCC

n
pð/ � g; hÞ; MQCn

pðg;hÞ � MQC
n
pð/ � g; hÞ:

2. When n = 1 and p = 1, various known results are easily obtained as special cases of Theorem 2.2. For instance, the result [6,
Theorem 3.3] is easily deduced from Theorem 2.2 (1), while [6, Theorem 3.6] follows from Theorem 2.2 (2). If g(z) = 1/
[z(1 � z)], then the result [6, Corollary 3.5] follows from Theorem 2.2 (1). Similarly, the result [6, Theorem 3.7] follows
from Theorem 2.2 (3), while [6, Corollary 3.12] is a special case of Theorem 2.2 (4).

3. Meromorphic multivalent functions with respect to n-ply symmetric, conjugate and symmetric conjugate points

In this section, it is assumed that p is an odd number. As before, it is assumed that the function g 2 Mp is a fixed function
and the function h is convex univalent with positive real part satisfying h(0) = 1. The classes MSTSn

pðhÞ; MSTC
n
pðhÞ;

MSTSCn
pðhÞ of meromorphic p-valent starlike functions with respect to n-ply symmetric, n-ply conjugate and n-ply symmetric

conjugate points are defined by the subordination

726 R. Chandrashekar et al. / Applied Mathematics and Computation 218 (2011) 723–728
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�1
p

zf 0ðzÞ
FnðzÞ

� hðzÞ;

where F is given, respectively by

FðzÞ ¼ f ðzÞ � f ð�zÞ
2

; FðzÞ ¼ f ðzÞ þ f ð�zÞ
2

; or FðzÞ ¼ f ðzÞ � f ð��zÞ
2

:

The corresponding convex classes MCVSn
pðhÞ; MCVC

n
pðhÞ, and MCVSCn

pðhÞ are defined by

�1
p
ðzf 0ðzÞÞ0

F 0nðzÞ
� hðzÞ;

with the corresponding F given above. For a given g, a function f belongs to the classes MSTSn
pðg;hÞ; MSTC

n
pðg;hÞ, or

MSTSCn
pðg;hÞ if and only if f ⁄ g belongs to the corresponding class MSTSn

pðhÞ; MSTC
n
pðhÞ, or MSTSCn

pðhÞ. The classes
MCVSn

pðg;hÞ; MCVC
n
pðg;hÞ, and MCVSCn

pðg;hÞ are defined similarly.

Theorem 3.1. Let h and / satisfy the conditions of Theorem 2.2.

1. If f is in MSTSn
pðg;hÞ (or in MCVSn

pðg;hÞ), then / ⁄ f is, respectively in MSTSn
pðg;hÞ (or in MCVSn

pðg;hÞ).
2. Let / has real coefficients. If f belongs to any one of the classes MSTCn

pðg;hÞ; MCVC
n
pðg;hÞ; MSTSC

n
pðg;hÞ, or MCVSCn

pðg;hÞ,
then / ⁄ f belongs to the same class.

Proof. We only show that if f is inMSTSn
pðhÞ, then so is / ⁄ f. The proof of the other claims is similar, and therefore omitted.

Define the functions H and W by

HðzÞ :¼ � zf 0ðzÞ
pFnðzÞ

and WðzÞ :¼ zpþ1FnðzÞ:

Thus for any fixed z 2 D,

� zf 0ðzÞ
pFnðzÞ

2 hðDÞ; ð3:1Þ

where FðzÞ ¼ f ðzÞ�f ð�zÞ
2 . Replacing z by �z in 3.1 and taking the convex combinations, it follows that

� zF 0ðzÞ
pFnðzÞ

� hðDÞ:

This shows that the function F 2MST n
pðhÞ, and the proof of Theorem 2.2 now shows that Fn 2 MST pðhÞ. Since h is a convex

function with RehðzÞ < 1þ 1�a
p , it follows that

Re
zW0ðzÞ
WðzÞ ¼ Re

zF 0nðzÞ
FnðzÞ

þ pþ 1 > a;

and hence zpþ1Fn 2 ST ðaÞ. Since zpþ1/ 2 Ra and w 2 ST ðaÞ, Theorem 2.1 yields

ð/ � HFnÞðzÞ
ð/ � FnÞðzÞ

¼ ðz
pþ1/ðzÞÞ � ðHðzÞwðzÞÞ
ðzpþ1/ðzÞÞ � ðwðzÞÞ 2 coðHðDÞÞ;

and because H(z) � h(z), it follows that

�2
p

zð/ � f Þ0ðzÞ
ð/ � f ÞnðzÞ � ð/ � f Þnð�zÞ ¼

ð/ � HFnÞðzÞ
ð/ � FnÞðzÞ

� hðzÞ:

Hence / � f 2 MSTSn
pðhÞ. h
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